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Introduction

This paper is concerned with;fhe fracture properties of amorphous, linear
high polymers below the glass transition temperature and under conditions of load-
ing such tnat material failure may be classified as apparently brittle. At extremely
low rates of loading or at temperatures approaching the glass transition, the poly-
mers of interest may also exhibit a ductile type of failure, and the relevance of
the concepts presented to such a failure mode is also mentioned briefly.

It is well known that glasslike, linear high nolymers are capable of innomo-
geneous deformation processes. Crazc formatioa is an example of such a non-uniform
deformation system in waich the stresses and deformations within the craze are
markedly different from the corresponding quantities within the uncrazed "matrix,"
or bulk material. Since the formation of a craze represents an apparently plastic

deformation, it follows that thc size of the craze is not uniquely coupled to the

load or deformation wiiich acts at any instant on the bulk sample. Rather, tne
extent of apparently plastic deformation wihich constitutes the craze is coupled to
the entire stress history of the flaw or defect whica generated the stress concen-
tration giving rise to a localized plastic deformation. Thus, it follows that}inow-
ledge of the initial stress concentration factor, thc sample loading history, and
the rheological response of the material to localized high stresses are required to

define the path-dependent growth of a plastic region within an apparently glasslike

matrix.

Attempts to apply the Griffith criterion (1), equation 1,
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to tensile strength data of polystyrene (PS) and polymethylmethacrylate (PhMMA)
have indicated a number of conceptual difficulties. For example, it has been
observed (2, 3) that PS and PMMA obey the Griffith equation qualitatively in that
a plot of log O’ g versus log c, for artificial flaws of length c, gives a straight

line of slope (-1/2). llowever, attempts to correlate the experimental values of

ol

the experimental value is generally two or three orders of magnitude larger than the
value obtained by consideration of chain backbone bond strengths and densities (4).
This "excess'’ value of “ has been attributed to the energy requirea to plastically
deform and orient the macromolecules at the tip of a propagating crack in a glass-
like nigh polymer (2, 3, 4).

Fracture surface morphology studies have shown conclusively that a high degree
of localized deformmation occurs near and on the surfaces formed by a propagating
crack in a glasslike high polymer (5-10). However, a conceptual difficulty arises
in attempting to extract information from the Griffith equation on plastic defor-
mation which occurs during the actual propagation of a crack, since this equation
is based on a criterion for crack instability, that is, the condition at wnich
crack growth initiates.

While the presence of large scale deformation and orientation of material at
the tip of a propagating crack cannot be denied, such deformations bhear little
direct relationsnip to tne deformations at the crack tip which occur prior to crack
propagation and which, of necessity, are dependent on the sample loading history.
Thus, any plastic deformation at the tip of a stress concentrating flaw, prior to
the onset of flaw instability, will be path-dependent and will result in a path-
dependent modification, or alteration, of the stress concentration giving rise to
the plastic deformation. Therefore, such plastic deformations o not constitute
a material parameter, per se, but rather a path-dependent function of the sample

loading history, initial stress concentration factor, rheological response of the
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material, and the mutual interaction of the rheological response and stress con-
centration, all prior to failure.

Another conceptual difficulty in the application of the Griffith equation
to glasslike high polymer; is the observed decrease of “ with tensile test temp-
erature (11), in contrast to the expected enhancement of plastic processes at ele-
ns of the Griffith equation’include its
inability to account for time-dependent phenomena such as rate of loading effects
on tensile strength or for creep failure, unless additional ad-hoc variations of

\‘ are permitted.

A demonstration of the significance of plastic processes which occur prior
to flaw instability, and which result in differences in observed tensile strength
data, is shown in Figures 1 and 2. Samples of P:MA and PS which contained artificial
flaws introduced at various temperatures were tensile tested at the same temperaturc
and Figures 1 anG 2 show the least-mean-squares lines obtained. Clearly, flaws of
the same size exhibit varying degrees of stress concentrating ability wiici arc
dependent on the conditions of flaw introduction. The results of tiiese experiments,
which illustrate the non-unique applicability of the Griffith equation, have been
interpreted in terms of the initial degree of plasticity which surrounds the flaw
tip, as influenced by tie {law introduction temperature (12, 13). Thus, if the

observed fracture strength is dependent on the conditions of flaw introduction

as well as the conditions of tne fracture test, then the Griffith surface energy
cannot be considered a material parameter, as originally intended. The lack of a
unique surface energy for high polymers has also been emphasized by Bikerman (17).
The effect of a zonec of plastic deformation on the stress concentration fac-
tor of a crack has been considered (14, 15). Refcrring to Figure 3, if a crack of
length ¢ (or an ellipse of major axis 2c), oriented perpendicular to thc axis of

applied uniaxial stress, cnds in a region of plastic deformation of extent Zs: ,



measured in the direction shown, then the stress concentration factor is given

by equation 2

T <
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where ), is the stress concentration factor, (,' is the applied stress, € is
the imiform stress in the plastic zone, A is a constant near unity, and ¢ and 0’

characterize the flaw as mentioned above. It is to be noted that the flaw tip,
i.e., its radius of curvature, does not enter into equation 2 if a plastic zone
surrounds the tip. However, in the absence of plasticity, the jﬂ, of equation 2
becomes the radius of curvature of the flaw itself. Therefore, any plasticity or
initiaticn of plasticity at the tip of a flaw can modify appreciably tne stress
concentrating ability of the flaw. For glasslike high polymers, consideration cof
such effects is essential to an understanding of the fracture process itself, as
illustrated by Figures 1 ana 2.

Incorporation of the plasticity modified stress concentration factor of equa-
tion 2 into a failure theory analogous to Griffith's theory results in cguation 3,

as obtained by Orowan (16):

2EX §e
- _'_ ] -
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where s%; is the size of the plastic zone at the instant of failure, i.c., at tie

onset of crack pronagation, and b is a molecular spacing constant. It is to be

noted that if nlasticity effects become negligible, then setting j% cqual to i
ogives the Orowan result for a sharp crack in an elastic medium, which is identical, }
within a constant, to the Griffith equation.

Using data (4) on thc failure strengths of PFA and 'S and tiiecretical estim-
ates of \‘ of the order of 500 ergs/cmz, it is found from equaticn 3 that 313 is
of the order of 1,0003, which is in reasonable agreement with cstimates of the deptis

of the oriented layers on the fracture surfaces of glassy polymers (&). Tiaus, using
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the Orowan modification, it would appear that the anomalous behavior of }‘ , the
surface energy term, may be accounted for by the allowance of a plastic zone at the
flaw tip which exists prior to flaw propagation. This conclusion is in agreement
with the results of Figures 1 and 2.

In view of the reasonable nature of the value of fa obtained above, a theory

will now be presented which treats the general, time-dependent stress concentration

factor - rheological response problem. Since amorphous glasslike high polymers
exhibit localized plastic deformations which are time-dependent and stress-sensi-
tive, the plastic zone at the tip of a flaw will vary in size during the sample
loading history. But the size of the plastic zone will influence the stress concen-
tration causing plastic and viscoelastic effects. Thus, the growth of a plastic
zone determines its own future ability for growth.

A simultaneous solution of the equation which gives the stress concentration

as a function of plastic zone size and the equation which describes the rheological
response of the material to localized high stress is required. This solution will
be path-dependent on the sample loading history and parametrically dependent on
the initial value of the stress concentration factor, i.e., the character of the
flaw. Only after solution for the stress history in the plastic zone can a local-
ized criterion of failure be used to deduce wien sample failure will occur. Form-
ulated in such a manner, localized failure can be described by a material constant
which is independent of the sample loading history (e.g. creep or constant strain
rate) and sample conditions (e.z. temperature). However, sample loading history
and temperature will influence the rheological response of the plastic zone and
thereby alter the stress path in that region.

It is emphasized that equation 3 is not the solution to the stated problem,
since that equation is derived [or a plastic zone of constant size and hence does
not incorporate the path-dependent solution for the stress concentration factor as

required for the stress-sensitive, viscoelastic - plastic response of a glasslike




high polymer. The simultaneous solution outlined above is presented below for arbit-
rary sample loading history and arbitrary sample rheology. Specific solutions for
PMA, for the specified loading histories of creep and constant strain rate, are
then given and compared with experimental results.

A detailed development of the theory, and its applications to PMdA, may be

found eisewhere (i8, 19).




Theozx
The Critical Zone

For purposes of illustration, consider a flaw in the form of an edge crack
of length c (see Figure 3) or an elliptical crack of major axis 2 c, oriented per-
pendicular to the applied uniaxial tension. Let the tip of the crack end in a
plastic zone of thickness 2’; measured parallel to the applied stress. It is
assumed that the flaw under consideration represents the critical sample flaw, that
is, the flaw with the highest initial stress concentration factor (as defined by
equation 2). The region at the flaw tip where nlastic deformations initiate and/
or grow is referred to as the critical zone and is the region where local failure
will initiate.

Because of the viscoelastic-plastic response of a glasslike high polymer to
localized high stresses, the plastic region at the flaw tip will, in gencral,
undergo a time-dependent growth with a path determined by the stress history of
the critical zone and by the applied sample stress history. Since the stress con-
centration factor is dependent on the size of the plastic zone, it follows tiat
growth of the zone will alter tne driving force, or stress, for later growth.
Thus, simultaneous solution of the stress concentration equation with the rieolog-
ical equation describing the stress-deformation-time response of the material in
the critical zone is reauired to determine the stress history of the plastic zone.

It is to be emphasized that the plastic deformation process referred to
represents those deformations which occur during the sample loading history prior
to failure initiation, i.e., crack or flaw propagation, in contradistinction to
those plastic processes which occur during crack propagation. The latter manifest
themselves in the fracture surface morphology through the kinetics of crack prop-
agation. Presumably, both plastic processes are governed by the sample's rieolog-
ical response to localized high stresses, but only those plastic deformations whick

occur prior to failure initiation are of concern here.
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The growth of the critical zone may be likened to the growth of a craze
during its initial stages of thickening in the direction of applied stress. Given
proper conditions of stress, time, and environment, it has been demonstrated (20,
21) that the critical zone will ultimately propagate in the direction perpendicular
to applied stress and become a visible craze.

It is recognized that, for a high polymer below its glass transition temp-
erature, there is no abrupt boundary between the highly oriented plastic material
in the critical zone and the bulk material, but a continuous gradient of high defor-
mation which decays outward from the flaw tip. For a material with a true local
yield stress, the critical zone would be identical to that first considered by
Neuber (14) and would result in a stress concentration factor given by equation 2.

In order to develop a first approximation to the time dependence of the stress
concentration factor, as influenced by the growth of a plastic zone, it is assumed
that a stress averaged truly plastic zone of uniform stress can be substituted
for the apparently plastic zone of continuous stress gradient. Thus, in Figure 3,
2 represents the average initial size of the plastic zone at the tip of the
critical flaw. The initial stress concentration factor, prior to any sample load-
ing, is then given by equation Z.

The load imposed on the bulk sample is greatly magnified in the critical zone
and results in growth of the plastic zone to some size Zji(t) at a time t measured
from the commencement of the sample loading history. The growth of the plastic

zone results in a change of the stress concentration factor, assumed to be given

by equation 2, which at time t is:
()= — =~ et (4)
R = Zep) s@)

In order to obttain a solution for tine stress concentration factor, equation 4, as

a function of time, it is necessary to obtain the size of tle plastic zone, ‘j)(t)
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as a function of time. For convenience, define a nominal strain for the plastic

zone, 5-(t), as follows:
(af) = o
t) =
3 e

Thus,zr(0)==0 at the initiation of the sample loading history. Substitution of

(3)

equation 5 into equation 4 gives the stress concentration factor as a function of

nominal strain (or relative growtii) of the critical zone:
Va
Q) = 28 = [ 3] ©

where Q, is the Neuber constant defined by equation 2, and represents the initial
value of the stress concentration factor, that is, prior to any sample loading
history.

It is now necessary to describe the growth of the viscoelastic-plastic zone

at the flaw tip under the influence of the time-dependent high stress in tie crit-

ical zone, as defined by equation 0. To illustrate the proccdure, consider one

nossible rheological equation for the critical zone in the following foim:
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HT =T34

(7a)

where !l is a time-dependent differential operator given by

3
H:a.,-.—a.,a‘i'; j,t‘+a3§_i—’+"' (7b)

y A
H = a,d”
A
= di
and J is given, similarly, by

3‘:’2 bié—‘—r e

and where the ai and bi are functions of time and stress level i: , in general,
or arc constants for a linear material. Fquation 7 is only intended as an example
rheological statement of tie critical zone response and may be of different fom
depending on the material under consideration.

For a critical zone rheological equation of tie form of equation 7, one of

several ways to proceed with the simultanccus solution of equations 7 and 6 is as

. .. N . .. .
follows: FEquation 5 may be used to eliminate the stress { and its derivatives

from equation 7. For examnle, from equation 6 one obtains
(8)

amm—— -

dU_z-qlon) _ o) 3
d [I+Slt\]"1 L [1+3(1) e
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where the large dot denotes derivation with respect to time. Equation 8 can now
.

be used to replace 'C' where it occurs in equation 7 by derivatives on S and

on ( , the latter being known for a prescribed, but arbitrary, sample loading

history.

Thus, a systematic reduction of equation 7 may be achieved in which all func-
ions of ? aced by functions of and &, thcrchy obtaining a diff-
erential equation in S which contains prescribed sample loading functions, @ (t),
known rheological constants and the parameter Q,. Solution of the resultant differ-
ential equation yields :; (t) wnich, wihen combined with equation 6 gives Q(t), the
desired result.

The procedure just outlined accounts for the mutual interaction of the stress
concentration causing viscoelastic-plastic response of the critical zone, and tie
effect of the plastic response on the value of the stress concentration. In gen-
eral, the method of solution outlined will yield different stress concentration
paths Q(t) depending on tihc chosen sample loading path ¢ (t), the Neuber constant
o, and the particular rheological constants and equation for the given material.
The procedure presented can, in principle, be applicd to a material capable of any
arbitrary localized viscoelastic-plastic response, which may or may not be describ-
able by a rheological model of the form of equation 7.

The formulation of the critical zone concept presented here cmbodies the
following four assumptions: (a) the deformation of the critical zone is essentially
an isothermal process; (b) the applied sample stress history is uniaxial; (c)
the stress concentration factor for the flaw tip may be obtained, to a first approx-
imation, by a one-dimensional, but unstcady state and path-dependent, stress anal-
ysis of a plastic zone of uniform stress‘zr which grows at the flaw tip; (d) tae
arowth of the plastic zone is essentially a constant mass process.

The first assumption limits the application of the theory to relatively low

speed failure tests, and excludes application to dynamic conditions. rfowever, low
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frequency cyclical tests are probably included in this treatment. Some prelimin-
ary work on the problem of the adiabatic growth of the critical zone can be found

elsewhere (18).

Limitations on the applications of this theory imposed by assumption ''b"

can be removed, in principle, by a two or three dimensional stress field solution

+
>
D

for the critical zone and sample. Assumption ''c'' does not appear to vitiate the
applications of the theory to uniaxial sample loading failure tests since, as is

shown later in this paper, the results obtained are in good agreement with exper-

imental data. The significance of assumption ''d", particularly as it pertains to
the transition from apparently brittle to ductile failure, is discussed in the

next section of this paper.

Failure Criterion for the Critical Zone

Having determined the stress history of the critical zone, it is now nec-
essary to examine the possible modes of failure which the zone may undergo. If
the critical zone contained a relatively low molecular weight material, two pos-
sible modes of failure could be controlling. The first could involve the cohesive
failure of the critical zone by a disruption of the intermolecular bonds between
the molecules lying across the potential failure plane. Such failure, which may

be termed intermolecular cohesive failure, is similar to the failure exhibitec by

a cavitating liquid or the shattering of an inorganic glass, and involves little
or no intramolecular bond breakdown.

The possibility of a linear high polymer failing in such a manner is remote
since the energy or stress required for a cooperative breakcown of the intermol-
ecular bonds along the high polymer chain far exceeds the energy or stress required
to sever the covalent bonds in the chain backbone.

Another possible mode of failure for a low molecular weight material could

be the viscous translation of the molecules in the critical zone across the
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potential failure plane. This viscous mode of failure is also possible for a high
polymer and may be the ultimate cause of failure for a ductile or necking type of
failure. However, a glasslike high polymer below its glass transition temperature
is generally subjected to stress-time-temperature conditions such that apparently
brittle failure predominates. The possibility that ductile failure may occur is
considered below but, for the present purposes, only apparently brittie faiiure of
the bulk sample is of interest.

It is assumed that the material in thc critical zone fails by the dissocia-
tion of the primary chain backbone bonds which traverse the potential failure
plane (hereafter referrcd to as active bonds and defined below), when the bulk
sample exhibits apparently brittle failure. However, it is recognized that large
scale deformations and orientations of the material in the critical zone generally

nrecede the intramolecular bond breakdown in that zone, and are responsible for the

apparent differences in failure strengths observed wunder various sample loading his-
tories, temperatures, and flaw introduction conditions. (A better description of
the overall failure process may be had by calling the process semi-ductile rather
than apparently brittle but a change in nomenclaturc at this point would violate
the vrinciple of coaservation of confusion.)

Thus, regardless of the defomation path by which the critical zcne deforms
nrior to localized failure, a criterion of incipient criticality for the high stress
region may be written as follows:

N
When the tensile stress ({) in the critical zone, as defined by the nath

deperncdent stress concentration in the critical zone, is such that it equals or

excecds the intramolecular cohesive strength of the average active primary chain

bond lying across the potential fracture plane, the critical zone must fail. Gen-

eral material failure rust follow if the applied load is not irmeciately removed or

reduced in some fashion.
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The nominal stress in the critical zone is given by equation 6, after X (t)
is obtained by simultaneous solution of equations 6 and 7 as outlined above, and

may be rewritten as follows:

T)= Qoo (#) it Xlt)]'v" ©)

where @ (t) is a prescribed, but arbitrary, uniaxial sample loading history.

Let the number of active bonds, ver unit area, crossing the potential failure
plane in the critical zone be n(t), tie volume density of tucse bonds N (t), and
the repeat distance of an active bond measured along the chain backbone be Jb .

Then

nit)= N(i’)zps

(10)
Because the critical zone is highly defommed, prior to incipient criticality, the

density of active bonds will decrease as the critical zone grows. Thus

N__.._if) = [+ Fm]” an

where N, is the initial volume Jdensity of active chain backbone bonds, that is, at
time zero and prior to any sample locading history. (Recall that S (0) = V)

The number N_ is thercfore the same for bulk and critical zone material. Thus,

equations 10 and 11 combine to give

h(*):ﬂoph["fg(*)]_' (12)

It is to be emphasized that equation 11 accounts for the increased volumc of
the critical zone as a result of its high deformation in the direction narallel to
the applied stress. This excess volume may not be uniformly distributeu in the

critical zone, but rather may be in the form of small pockets or voids, mucn as
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is the case reported for craze structures (22). lowever, the density correction

is required here even though the exact distribution of the added volume is uncer-

tain.

The number average force per active bond in the critical zone is given by

Fl_‘,\ - i‘.l*)'ﬂ(*) (13)
ST n (1)

where "‘4 (t) is the average cosine projection which the active bonds make with the

normal to the failure plane (see figure 4). Combination of equations 9, 12, and

13 gives

Fl£) = &o ¢7'13t7),ii'(;t{> [: ""E;lat'jj] /2
v,

(14)

Equation 14 may be rearranged as follows:

Qo O (t) [H’XH’)] fr o Flt );" (*) (15)
’V¢>4e|,

The maxinum permissible value of the right side of equation 15 is obtained when
—_——

F(t) = F*, the cohesive strengti of the active bonds in question, and when‘/ll

equals the projection obtained when the molecular chains are completely oriented

in the direction of apnlied stress (see Tigure 4). Defining a critical stress

function f:.(t) and its maximun value PC* as follows:

(10)

B ()= @, B[+ 51z ¢ (o3t
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It follows that the condition of incipient criticality is obtained when Pc(t) = PC*.

At all times in the loading history prior to the onset of localized failure,

P( (t) < Fg* 0

Pc(t) = PC* Incipient Criticality (18)

It is to be noted that Pc(t), the critical stress function, is a path-depend-
ent function whose value at any time is determined by the solution to the critical
zone theology-stress concentration problem presenteu above. This solution will
depend upon the sample loading histofy, the sample's rheological behavior to local-
ized high stress, and parametrically on (,, the Neuber constant. It is emphasized
that Pc(t) derends on (§ (t) not only explicitly (see equation 16) but also implic-
itly through the dependence of 8— (t) on @ (t). Furthemmore, Pc(t) will, in
general, depend on all factors which influence the rheological response of the crit-
ical zone such as temperature, strain rate, initial flaw character, etc.

In contrast to Pc(t), the value of P_* is solely a function of material constants
and represents a local failure criterion which is independent of all rheological
manifestations of the failure test. Thus, the value of PC* is a material constant
and should be applicablc to any strain rate, temperature, sample loading history,
or initial flaw condition, provided, of course, that apparently brittle failure is
the observed mode of sample failure.

In the development of the condition of incipient criticality expressed by
equation 18, an active bond refers to a stress-supporting covalent chain tackbone
bond in a macromolecule which is "'anchored" to the glasslike matrix surrounding the

critical zone. If such ‘‘anchoring’' is not highly prevalent, then thc critical zone
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deformation is not a highly localized deformation of a constant mass of material
defined by the original size of the critical zone. Presumably, the anchoring may

be accomplished simply by the macromolecule being of sufficient length to completely
traverse the critical zone, thercby having both ends imbedded in the glassy matrix.
However, it is conceivable that the macromolecule is anchored at one or both ends

by partial entaglements with othcr mclecules which partially occupy the
zone.

Under the appropriate conditions of stress, time, and temperature, the crit-
ical zone may grow by the addition of mass, that is, by a collapse of the glasslike
walls of the highly stressed region of plastic deformation. If such is the case,
then the assumption of a constant mass critical zone process (sece the preceding

section: The Critical Zone) and equation 11, which gives the volume correction for

a constant mass deformation, are not valid. The condition of non-localized and
non-confined growth of the critical zone, by mass addition, 1is believed to represent
the onset of general sample ductility. Since the condition of incipient criticali-
ty defined by equation 18 represents a maximmm stress condition for tne material

in the critical zone, it follows that a ductile or necking type of failure must
occur under conditions such that Pc(t)<( p_*,

At the time-stress-temperature conditions under which sample failure is
apparently brittle, the critical stress function path, Pc(t), is sucn that P;(*):P‘*
prior to the stress state and time required for non-localized growth of the critical
zone, i.e., for non-confined ductility.

Before proceeding to the numerical application of the theory to PiMA, some
qualitative deductions on the effects of temperature may be obtained. Consicer
a series of samples containing flaws with identical stress concentration factors,
i.e., of constant Q,, which are tested at various temperaturcs. At the condition

of incipient criticality, equations 16, 17, and 18 may be written as follows:
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Op [1+ Se]vz = P*/g,

(19)

The right side of equation 19 is nearly independent of temperature, since
F* and N, are, at best, weakly dependent on temperature, over a reasonable range.
Thus, to a first approximation, P.* is independent of temperature. However, ?i(t)
will be a strong function of temperature since it reflects the rheological growth
of the critical zone. Given that all samples under consideration have the same
Qo, and hence start with the same stress concentration, rheological considerations
dictate that a sanple tested at higher temperature will display enhancec viscoelastic-
nlastic processes within the critical zone. Thus, 58 is expected to increase with
temperature, under identical loading history concitions. It follows directly from
equation 19, that 0—8 rnust decreasc with temperature.

Thus, the observed decrease of tensile strength with temperature is consistent
with the expected enhancement cf viscoelastic-plastic response at higher tcmpera-
tures. By way of contrast, the Griffitih equation forces one to conclude that the
surface energy term decreases with temperature (refer to equation 1 at constant c)
which is contradictory to the supposedly large contribution of plastic processes
to the magnitude of the surfacc cnergy.

The effect of {law introduction temperature, at constant tensile test temp-
erature, can be explained as follows: A measurc of the initial stress concentra-
tion factor for a flaw in a material capable of localized viscoeclastic-rlastic
resnonsc is oiven by the Neuber constant, C,, which is pronortional to the square
root of ‘9&5. Thus, flaws of identical length have stress concentrations which arc
inversely proportional to the extent of plastic deformation at tace flaw tip. Such
considerations led to the cxperiments suwmarizecd in Figures 1 and 2 which show
clearly that flaws introduced at a higher temperature are less effective in concen-

trating stress than flaws introduced at a lower temperature. This cbservation is
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consistent with the expected increase in viscoelastic-plastic deformation processes
which would accompany the introduction of a crack (flaw) at a higher temperature.

If the material response to localized high stresses is primarily of an clastic
nature, then in the limit of vanishing viscoelastic-plastic deformation at the
flaw tip, the critical zone and bulk material approach a homogeneous deformation

o1 ‘I“‘- (el )4 B
AL W

system, with at best a high gradient o
ditions, it can be siown that this theory approaches, both conceptually and analyti-
cally, the Griffith theory. At the other extreme of behavior, where a plastic

region of constant size constitutes the critical zone, this theory reduces to Orowan's
modification of the Griffith theory. In general, for polymeric glasses, neither
extreme of behavior is likely because of the propensity of such systems to undergo
localized viscoelastic-plastic deformations which are stress level sensitive. Under
these conditions, the time and path dependence of the stress concentration factor

is of major importance to a description of the failure process. VIt is proposed that

the theory presented here is at least a first approximation to the phenomenon of

the coupled stress concentration - rheological responsc system.
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Theoretical Failure Curves

For PMMA

In order to illustrate the specific applications of the theory, constant
strain rate and creep failure of PMJA are considered here. The constant strain
rate failure test is an example of a prescribed strain history whereas the creep
test represents a prescribed stress history. The rheological model chosen to repre-
sent the viscoelastic-plastic response of PMMA is a Maxwell element in series with
a Voigt element, the viscous component of which obeys the Eyring hyperbolic-sine
flow law. The model is shown in Figure 5, and is described by the following equa-
tion:

[ ]
é = %— + -g:-i-KﬂvJ‘- oL 7‘*1(6‘{:'5%)] (20)
1
1

If the same model is used to describe the viscoelastic-plastic response of the crit-

s - %_'_ + %. + Mid[?-ﬁz(X- % "S %it)] (21)

The model of Figure 5 incorporates the minimum number of required features
for the expected rheological response of the critical zone, namely, immediate
elastic deformation, viscous {low, and retarded elastomeric response which is highly
stress sensitive (activated), the latter through the Eyring viscosity tem. In
fact, for the rheological constants used for PMVA, the model of Figure 5 shows
essentially linear viscoelastic behavior for the bulk material (equation 20) wiien
subjected to constant strain rate loading, whereas the cquation for the critical
zone (equation 21) with the same constants shows highly viscoplastic response.
The latter effect is due to the very high stresses which act in the critical zone
which, in terms of the model, serve to drastically lower the effective retardation

of the non-linear Voigt clement.




-21-

Earlier in this paper, it was noted that craze formation, and also critical
zone growth, is of an apparently plastic nature. The reason for this qualification
is that very high uniaxial orientation and deformation of a high polymeric material,
of necessity, produces a restoring force of a conformational entropy origin. Thus,
unless the glasslike walls of the critical zone collapse sufficiently to allow large
scale mass transfer of chain segments into the critical zone, the restoring force
will persist throughout the critical zone history. Because of the very high retarda-
tion of the segmental motion processes required to relieve the critical zone, or
a craze, of its high deformation, by comparison to the weak conformational entropy
restoring force, the deformation will appear plastic within many decades of time
after it has occured. Thus, the tem apparently plastic is an appropriate descrip-
tion of the critical zone deformation process which, in terms of its influence on
the failure properties of polymeric glasses, must be considered truly plastic.

The possibility of appreciable non-localized growth, or viscous flow, of
the critical zone has been considered in the previous section of this paper, where
it was proposed that such an effcct, which did not represent essentially constant
mass deformation of the critical zone, may represent the transition to ductile
failure. Tor the present purposes, apparently brittle failure is of interest and
thus, the critical zone growth, prior to incipient criticality, 1is envisaged to
be of a nearly constant mass and apparently plastic type. Within the time scale
of interest (namely, to failure initiation), the critical zone appears, however,
to be of a truly plastic nature. This point of view is consistent with the known
structure and behavior of both crazes and fracture surfaces in glasslike high poly-
mers.

The chosen rheological model for the critical zone, equation 21, displays
the required behavior. The deformation of the non-linear Veigt element embodies
the necessary restoring force whereas thc retardation of the Eyring element displays

a stress-activated yielding (at the high stresses in the critical zone), but no
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such yielding at lower stresses (for example, in the bulk material). Thus, the
high deformation of the Voigt element under the influence of a high stress may

be associated with the orientation and conformation changes which accompany the
growth of the critical zone material. This deformation fits the description of be-
ing apparently plastic since a removal of stress would deactivate the Eyring type
of flow and result in a “frozen-in" deformation.

Thus, the model of Figure 5 appears to be a good gqualitative representation
of both the bulk and critical zone response, as is shown below. liowever, it is
again emphasized that the coupled stress concentration-critical zone rheology
problem develoned in a preceding section of this paper is in no way restricted to
a model of the form of Figure 5. As improved rheological descriptions of critical
zone material and bulk material become available, the critical zone rheology prob-
lem can be embellished accordingly. For the present nurpose, the model of Figure
5 is taken to be a first approximation to the behavior of botn bulk and highly
stressed (critical zone) PMA, which, needless to say, should give a better des-

cription of the path-dependent stress in tihe critical zone than the constant stress

concentration, elastic model of the Griffith type of flaw.

The rheological constants for the model cf Figure 5 were obtained by analysis
of creep curves on PMMA at the same temmeratures to be used in the creep and con-
stant strain rate failure tests. The creep samples were fitted with extensometers
which were fed to an oscillographic recorder. The extension record so obtaincd
was used to obtain the immediate elastic deformation of the sample and to insure
that the creep load was applied rapidly, but not so rapid as to produce a dynamic
stress condition at short times.

The constant k, was obtained from the I.E.D. recorded and the known creep
load. The constant ”l was obtained from the long time portion of the creep curve,
after the linear creen region had been reached. The value of k2 was obtained from

the total amount of retarded elastomeric deformation observed from the beginning
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of the creep test to the limiting value obtained by extrapolation of the linear

flow region back to zero time, thereby subtracting out the purely viscous defor-
mation. Finally, the Eyring constants K mmiotiwere obtained by a suitable plot

of the retarded component of deformation versus log time and comparison of the curve
with a series of standard curves obtained from equation 20. Thus, the relative
shape of the sigmoidal curve gave #_ and the position of the curve on the log time
axis gave K.

It is emphasized that unique values of all the constants in the model were
obtained by the procedure used, and that there was no arbitrary judgment used in
obtaining these values. The procedure is explained in detail elsewhere (18). The
values of the constants so obtained were checked at various levels of creep stress
and found to be consistent. Also, the constants obtained in the creep tests were
then used to obtain a constant strain rate stress-strain curve for PMYA, from equa-
tion 20, and the predicted curve was in excellent agreement with experimental con-
stant strain rate curves. However, it is to be noted that unique, non-arbitrary
values of all the constants of the model cannot be obtained readily from a constant
strain rate test.

The constants obtained for PMMA by analysis of creep curves werc obtained with-
out any fracture data whatsoever. These constants are tabulated in Table 1 for
PMMA at 35°C and are used in the critical zone rheology analysis below for both the
constant strain rate and creep failure theoretical curves. No adjustments or mod-
ifications of the constants are used in the analysis for various loading histories,
flaw introduction temperatures, or rate of loading effects, provided of course that
all the failure tests are to be performed at the same temperature, namely 35°C.

For other temperatures or environmental conditions, new rheological constants are
necessary for the particular conditions of interest.

One way to proceed with the analysis of the path dependent stress concentra-

tion in the critical zone, for a rheological "‘equation of the fom of equation 21,




Table 1

Rheological Constants for PMMA at 35°¢C

k, - 3 x 100 dynes/cm2
,k; = 3 x 1010 dy'nes/c:m2
’qz -1 x 101® dyne—sec/cm2
X =3 x 108 cmz/dyne

K -5 x10° sec?
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is to climinate the stress 1: and its derivatives from this ecuation by means of

equation 6. Thus, from equation 6:

T =-qo0l(t) L1+ X(*)]-Vl (6)

=l e e otd) 3(“3_1 ®
L 2L 3" J
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(22)

Combination of cquations 6, 8, and 22 with equation 21 and rearrangement and inver-
sion of the hyperbolic sine term give, after differentiation of eauation 21 to remove

the integral sign:

Sy =da Av[E-viss+ 2vis (8 ) + ek

T <o
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where %.(t):vs‘.—v35§/z
%z(t)z oni]"" Qak;SV _5

y _1 A
V() = T.H-X{*).] & =Rk,

Because of the particular form for the critical zone rheological equation, equation
21, the stress (J° and its derivatives occur in equation 23 always dividea by ks,
Thus, it is convenient to define a dimensionless applied stress S = O-A

The non-linear, rather complex form of equation 23 for the critical zone size
is not due entirely to the rheological equation form chosen for analysis, namcly
equation 21. It is easily shown that if the rheological cquation for the critical

® [

zone were simply a !laxwell equation,?/A-t?/pl: 5 » then the equation obtained
after elimination of the critical zone stress (the equivalent of equation 23 here)
would also be non-linear in X . This is because the critical zonc stress ‘(\’
and its size 8 are not lincarly coupled (see equation 6). Thus, the path-
cepencent stress concentration problem is inherently of a nou-linear nature, recard-
less of the rheological equation which describes the critical zone. This is due to
the form of the stress concentration factor, eauation 6, which must be considered
when plasticity cffects are present at the flaw site.

Using the constants for DMFA, as tabulated in Table 1, equation 23 nmay be
solved numerically to obtain S (t), for any prescribed stress history @ (t),
and parametrically as a function of ¢,. Tor the constant strain rate condition, the
bulk strain history is given byfﬁlt(for all tzo) where T is a constant rate cf
strain. Equation 20 can now be solvcd numerically to obtain @ (t), o." (t). b" (t)
corresponding to tlie chosen strain history. Thus, a numerical solution to tiie non-

linecar differential equation for the critical zone size, cquation 23, can now bC
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performed, thereby yielding E;(t) for a specified Neuber constant Q_, and for
the chosen stress (strain) history.

(The procedure is somewhat more straightforward if the sample stress history
is prescribed, since @ (t) and its derivatives are known directly. Therefore,
use of equation 20 to generate (J (t) and its derivatives from a prescribed strain
history € (t) is not required).

The analysis described above has been carried out for PMMA at various rates
of strain, through the use of a high speed computer and a fourth order Runge-Kutta
scheme for the second order equation for the critical zone, equation 23. Thc rate
of growth of the critical zone, i; (t), obtained for a particular set of conditions
is shown in Figure 6, where the stress activaEed yielding of the rheological model
is clearly evident. Another integration of E (t) gives S (t) which can be used
with the known (prescribed) sample stress (§ (t) to generate the critical stress
function P.(t) (see equation 16). Figure 7 shows the final results of the calcula-
tions for the critical stress function Pc(t) as a function of time, for various
Neuber constants, and for a constant sample strain rate of 10°3 sec.”l. Ssuch
curves are obtainable for any arbitrary, but prescribed, sample stress or strain
history, and for any arbitrary critical zone rheological equation (for example,
equation 21).

The critical stress function paths shown in Figure 7 are, in general, a
function of the Neuber constant (initial stress concentration factor), the envir-
onmental conditions as they affect the rheological constants of the critical zone,
the sample stress or strain history (in this case, constant strain rate), anc the
particular constitutive equation which describes the critical zone benavior in the
given material.

The criterion of incipient criticality, as given by equation 1€, can now be
apprlied to the results shown in Figure 7. For PMMA, the constants used 1in the eval-

uation of P_*, from equation 17, are obtained as follows: It is assumed that the
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carbon-carbon backbone bond can be described adequately, in tension, by the Morse

potential, equation 24, 2
U= uo["%(‘“’\(%ﬂ (24)

where u is the bond energy at a spacing " , u‘ is the bond dissociation enecrgy,
"a'' 1s a constant obtainable from spectroscopic data, and j‘ is the equilibrium
bond spacing.

The bond "force constant' is given by the second derivative of the bond
energy, A:u/dlz . At bond spacings greater than the spacing where the Morse
potential exhibits an inflection, the force constant is negative. Thus, the inflec-
tion point represents, in a classical sense, the dissociation point for tie bond.
The maximum value of the force wihich the bond can support, i.e., its cohesive
strength, is obtained by evaluation of the first derivative of the iforse potential

at the point of inflection, which yields equation 25.

SERLILE (25)
213
Using known values of the Morse constants for the carbon-carbon hond (23), as
follows:
a = 3.35
\ﬂ.|= 5.5 x 10712 ergs/bond

,Qe = 1.57 x 108 am.

the cohesive strength is calculated to be

F* = 5.87 x 10°* dynes/bond (26)

For P:MA, the molecular weight of a repeatinz unit is 106, and the density
of the bulk material is 1.18 to 1.19 at 25°C (24). The number of active boaus ner

repeat unit is two. Therefore, N, (see equation 17) is given by equation 27.



N, = 2(1.18) (6.02 x 10°%)
T00 27

Referring to the derivation of equation 17 and Figure 4, 4‘ b is taken to be the
-] -

length of the carbon-carbon bond (1.57 A), and A is given by equation 28 for

complete orientation of the critical zonc material at failure.

AL = cosine (180

M 109.5) = 0.81 (28)

y)

Combination of equations 17, 26, 27, and 28 give$§

n
F}_*=I.LIXIO ‘_l_c:gﬂ n_&i:S’.‘Io (29)
xS
Since the particular form of equation 23 led to the convenient dimensionless applied
stress S =‘4t’ the ordinate of Figure 7 is plotted as dimensionless Pc(t) /ko.
Thus, the value of PC* can also be made dimensionless by the same constant kz, as
indicated in equation 29. This simply corresponds to division of both sides of the
failure criterion, equation 18, by the constant 1:2.

Referring to Figure 7, incipient criticality of the critical zonec, and there-
after apparently brittle sample failure, occurs when the critical stress function
reaches the horizontal line which denotes Pc"‘/k2 = 5.40. This corresponds to the
failure criterion given by equation 18. Again, it is emphasized that the critical
stress function path Pc(t) will, in general, depend on the rheological response of
the critical zone, the environmental conditions, the sample loading history, and
the initial stress concentration factor, as given by the Neuber constant (Q,). How-
ever, for a given material, P C* represents a material constant independent of the
rheological response of the critical zone. Thus, the value of PC* = 1.6 x 1()11
represents the criticality condition for apparently brittle failurc of PMMA regard-

less of the nature of the sample loading history, environmental conditions, or Neuber

constant.
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For the constant strain rate condition used to generate the critical stress
functions of Figure 7, the intersections of the curves of various initial stress
concentration factors with the horizontal criticality curve give the times to fail-
ure for the various Neuber constants. Since the stress (or strain) history applied
to the sample is specified, the time to failure immediately gives the sample stress
(or strain) at failure. Thus, a plot of failure stress versus Neuber constant is
readily obtained and these results are shown in Figure 8. Also shown in this fig-
ure are results obtained for different sample strain rates, after development of
the appropriate critical stress functions in a manner identical to that used to
obtain Figure 7. The effect of a two decade change in strain rate is small, but
is consistent with experimental observation (25).

Calculations for a sample stress history which corresponds to a rapid rate
of stress followed by a constant creep load have been performed in detail elsewhere
(18) where an asymptotic formula for creep failure is also presented. The creep
failure calculations are summarized here in Figure 9, for PMMA at 35°C. The method
of solution is identical to that used to obtain Figure 8, namely solution for the
critical zone growth, equation 23, followed by calculation of the critical stress
function, both for a creep stress nistory (¢;) applied to tlie sample. Finally, the
criterion of incipient criticality, equation 18, was used to obtain the final results,
Figure 9.

Because of the particular fom of equations 21 and 23 which describe the
critical zone rheological response, the creep results arc plotted in Figure 9 with
, is known (seec Table 1)

2
and Q, represents the Neuber constant, or initial stress concentration factor, for

an ordinate given by S,Q, (= o:ti.‘. ). The constant k
) !

a given creep sample. If a series of samples are chosen for crecp failure study
which all have similar adventitious or artificial flaws, then Q, mercly corresponds
to a vertical scale expansion factor in Figure 9, from which a creep failure curve

of 0; versus log t, (time to break) can be readily obtained.
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Further discussion of the theoretical failure results obtained by the crit-
ical stress function amnalysis for the critical zone is presented below after com-

parison of Figures 8 and 9 with experimental failure data.

Experimental Apnlications

To PAMA

The theoretical failure curves develoned for constant strain rate (Figure §)
and creep (Figurc 9) failure of PA at 35°C can be applied directly to experi-
mental data on the fracture of this material under the same conditions. Fxper-
imental studies were performed on cast PMA shect (Rohm § laas, Plexiglas 11,

Type G) of one-sixteenth inch nominal thickness. The fracture samnles and the
samples used in the creep study to obtain the rheological constants for equations
20 and 21 (see Table 1) were cut from the same sample sheets.

The experimental procedure for sample preparation is described in detail
elsewhere (18). Briefly, samnle blanks were cut from the PMMA sheet and artificial
flaws in the form of edge cracks were introduccd by means of a razor blade guillo-
tine enclosed in a constant termerature chamber. Samples were discarded if the
free running crack produced was not perpendicular to the sample edge, or if the
free running crack was not appreciably longer than the initial razor blade penetra-
tion. Final sample machining was performed on a high speed 'Tensil-Kut'' machine.

The creen samples were machined to a rectangular shape of six inches by one-half incii,
and the constant strain rate samples conformed to ASTM specification D638-58T.

After machining, the flaw sizes (free muning crack length) were measured on a pol-
arized light microscope. The samples were then loaded to failure using an "'Instron"
tensile tester for constant strain rate tests, or a creep tester for the creep load
failure tests. The construction and operation of the creep tester is described

in detail elsewhere (18). All tests were per{ommed at constant tempcrature.
1

The results for a constant strain rate of 1072 sec.”™t, and at 35°C, are shown
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in Figure 10 where the logarithm of the breaking stress is plotted versus the log-
arithm of the artificial flaw (crack) length. In Figure 11 the creep failure

results are plotted as the logarithm of the creep load times the square root of the
flaw (crack) size (multiplied by a constant) versus the logarithm of the time to
failure. The data of Figure 11 include all combinations of creep load and flaw size,
e.g., large flaw-small load, and small flaw-large load. The data presented were

all obtained at 35°C on samples containing artificial flaws introduced at 25°C.

The effect of flaw introduction temperature has already been emphasized and Figures

1 and 2 show the least-mean-squares lines for data obtained in the same manner as the
data of Figure 10.

In order to compare the experimental results with the theoretical failure

curves, it is necessary to first consider the effect of crack length on the initial
'

size of the critical zone. For flaws introduced under controlled conditions of
crack introduction, it is to be expected that the initial size of the critical zone,

P° , 1s independent of the length of the crack, c. This would be the case if all
the cracks were free running and introduced at the same temperature. Thus, it is
proposed that _fc is a constant for a series of samples containing artificial
flaws of various length, but all introduced under identical cracking (flaw intro-
duction) conditions. liowever, ﬁ is a function of the particular flaw introduction
technique and/or conditions, for any given material.

These deductions are intuitively appealing, when one considers thc physical
significance of the initial state of the critical zone. liowever, tiiese deductions
are essentially confirmed, or at least shown to he consistent, witn tiic auantita-
tive predictions of the theory. It is well known that a nlot of log 0; vs. log ¢
for constant strain rate failure of PMMA or PS gives a straight line of slope (-1/2).
Figure 8 also gives a straight line of slope (-1/2) when log 5-3 is plotted vs.
log 002 (recall that Q°2~1‘_-. ). Thus, artificial flaw introduction tec.niques

! " _
do indeed result in y, being independent of flaw length c, but acpendent on the
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conditions of flaw introduction, as is experimentally verified by Figures 1, 2, and
10. Note that the difference of log Q,2 and log ¢ is equal to log 4/,‘ and is
independent of flaw length for any given flaw introduction temperature, all other
flaw introduction variables such as propagation velocity being held censtant (in
this case, all being free running edge cracks).

The theoretical failure curves of Figures 8 and 9 were calculated without
recourse to fracture data of any kind. The only parameters used were known bond
strength and density constants for the PMMA chain backbone and rheological constants
obtained from creep tests. Therefore, since artificial flaws were uscd in the exper-
imental failure studies whose lengths werc measured prior to the test, it follows that

f, is the only undetermined parameter in Figures 8 and 9. llowever, the physical
meaning of Y is definite. Since the experimental failure data of Figures 10
and 11 were performed on samples containing flaws of known length, it follows that
comparison of Figures 8 and 9 with Figures 10 and 11, respectively, should yield
theoretical j; values, for the particular flaw introduction conditions usec.

Since .ft has been shown to be independent of flaw length, but dependent on
flaw introduction conditions, and since the flaws in both the constant strain rate
and creep failure samples were introduced under identical conditions, it follows
that \f{ for both Figures 10 and 11 should be the same. This is a necessary condi-
tion on the internal consistency of the theory and its applicability to various
sample loading histories.

Comparison of Figures 3 and 10 shows that the abscissae of these graphs differ
by a horizontal shift factor of log (44’5 ). In Figure 10, the cxperimental data are
represented by points whereas the solid line is actually the theoretical failure
curve of Figure 8 shifted horizontally. The shift factor used corresponds to a

.fL value of 190 R, which corresponds to the initial critical zone size for

the given flaw introduction conditions.
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Similarly, comparison of Figure 9 (replotted with a logarithmic ordinate)

[}
and Figure 11 shows that the ordinates differ by a factor of@o"jﬂ "'4-3]. In
Figure 11, the solid line is actually the theoretical curve of Figure 9 shifted

vertically by an amount which corresponds to a f value of 120 R, at the given

°
flaw introduction conditions.

In view of the admittedly crude first approximation to the critical zone
rheological response, as given by equation 21, the agreement of the values of Jﬂ,

obtained independently from both creep and constant strain rate failure tests is

deemed quite satisfactory. Moreover, the internal consistency of the concepts on
which the theory is predicated, when applied to variations of strain rate, test
temperature, flaw introduction temperature, and sample loading history leads us
to believe that these concepts are basically correct. Furthermore, the shapes of
the theoretical creep failure curve and the constant strain rate failurc curve
are in agreement with experimental data.

The theoretical failure curvc of Figure 9 indicates a marked decrease of
creep stress with failure time at about 10 seconds. There is some indication
that the experimental data of Figure 11 tend to verify this effect predicted bty
the theory. However, additional creep failure data at small flaw sizc and load
conditions are required to establish the validity of tliis predicted ceviation from
the often used, but empirical, linear relationship bctween creep stress anc log
(time-to-break).

The dependence of y, on the flaw introduction temmerature for PMiA can
be obtained by comnarison of Figures 1 and 8 using the horizontal s.ift calcula-

tion described above. The results of these calculations are vresented in Table 2.
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Table 2

Effect of Flaw Introduction Temperature on the Initial Size of the Crit-

ical Zone in PMMA (all samples fractured at 35°C.)

-]

Flaw Introduction Temperature (°C) ﬁ A)
-70 ' 177
30 195
55 239

The variation of fo with flaw introduction temperature is as expected, in

that higher temperatures should result in enhanced viscoelastic-plastic deformatiorn,

thereby resulting in less effective stress concentrations for a given flaw length.



Discussion

The theoretical failure curves of Figures 8 and 9 are
two examples of the application of the theory to various sample
loading histories. Both the constant strain rate and creep
failure curves were constructed using the same rheological
constants for the critical zone response and, of major impocrtance,
the same failure criterion for the critical zone. Differences

in failure strengths, or times to failure, which result from

variations in sample loading history, initial flaw character

or method of introduction, and temperature all serve to alter

the path dependence of the critical stress function Pé(t). In

contrast to the path dependence of Pc(t), the critical stress

number Pc* is a material constant independent of all rheological

manifestations and responses within the critical zone and is

therefore a true criterion of local failure initiation provided,

of course, that apparently brittle failure is the mode of fracture.
The criterion of incipient criticality, or local failure,

as given by Pc*, requires a knowledge of the strength, density,

and orientation of the chain backbone bonds which ultimately

fail within the critical zone. It is easily shown, in fact, that

the same parameters are involved in theoretical estimates of\‘,

the Griffith surface energy. However, because the coupled stress

concentration-critical zone rheology problem is directly formulated

in terms of the stress which acts within the critical zone, the

failure criterion is conveniently expressed as a critical stress

rather than a critical surface energy. This avoids the paradoxical
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definition of a surface energy which is a path-dependent variable
but is supposed to represent a material constant.

Referring to equation 19, it can be shown that the theoretical
curve of Figure 8 would not give a straight line unless the

factor (H'Xg)ih' is independent of the Neuber constant Q¢. In

the development of Figure 7 for the critical stress function

Pc(t), it was necessary to solve for the relative growth of the
critical zone as a function of time, namelyi;(t), when the critical
zone was subjected to a variable stress concentration factor

which itself is a function of X As shown earlier, this required
the formulation and solution of equation 23 (for the chosen example,
rheological equation 21). Thus, thj at the time of incipient
criticality, namely the intersection of Pc(t).with Pc* in Figure 7,
is also obtained during the procedure used to construct Figure 7

(or its equivalent for any sample loading history).

For the conditions of Figures 7 & 8 (namely, PMMA; at 35°C;
under a constant strain rate loading; and for the critical zone
rheological response specified by equation 21 and the constants
of Table 1), the values of ‘S(t) at failure initiation (i.e.,)k )

obtained are given in Table 3.
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Table 3
Theoretical Values of Critical Zone Growth to Failure

for PMMA Under Constant Strain Rate at 35°C.

Strain Rate (sec™ 1) Qo g;- o
1 x 10”4 250 2.814
500 2.813
1000 2.811
2000 2.808
1 x 1073 250 2.813
a 500 2.812
| 1000 2.791
1 x 102 250 2.812
500 2.810
1000 2.790
2000 2.786

The theoretical calculations show that the critical
zone relative growth from the initiation of loading to the instant
at which flaw propagation initiates is essentially independent
of the initial stress concentration factor, for a constant strain
rate loading at a given temperature. This is so even though the
S(t) path is definitely dependent on the Neuber constant. The
! tensile test temperature should have a far greater influence
on the value of S;than the effect of strain rate, presumably
} because of the strong influence of temperature on the rheological
constants for the critical zone. However, calculations at temperatures
other than 35°C are required to substantiate this effect.
In view of the constancy'of'gsversus Neuber constant, for a

constant strain rate loading, it can be concluded that glasslike
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high polymers give qualitative agreement with a Griffith type

plot of logﬁi versus log c for two reasons: (1) The value of

j% is essentially independent of ¥law length provided all flaws

are introduced under identical conditions. (2) The total growth

of the critical zone up to the initiation of flaw propagation

is essentially independent of the level of initial stress concentration.
However, it is conceivable that a glasslike high polymer with
rheological response to localized high stress of a nature
considerably different than that described by equation 21 would

not result in constancy of S;. Under such conditions, the equivalent
of Figure 8 would not be a straight line.

The theoretical values of Xscan be used to obtain a measure
of the size of the critical zone at the instant of flaw instability.
1f P,= 1958 , and Jgis taken as 2.8, then fg=Fo (143 )= 740R. The
total thickness of the critical zone is ZY, or ca. 15003%.

Since the stress is a maximum at the flaw tip in the apparently
plastic zone and decays outward from the flaw tip, plasticity
effects will be most pronounced at the flaw tip. The numerical
value offcharacterizes the maximum stress at the flaw tip,
and may be thought of as representative of the size of a truly
plastic zone with a uniform stress equal to the maximum stress
at the flaw tip. Therefore, numerical values ofj’at any instant
of time (e.g.j%) must be numerically smaller than the extent of
plastic deformation at the flaw tip in any material capable of

apparently plastic response. This is the case because the

viscoelastic-plastic deformation at the flaw tip is a result of
the cumulative effect of the entire stress history which existed

at the flaw vicinity, as well as the instantaneous stress level.
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Summarz

! In the introduction, attention was called to the Orowan
treatment for a crack blunted by a plastic domain. However,
the conclusions reached here appear to be more general in that
consideration has been given to a general viscoelastic-plastic

zone which generates a time-and path-dependent stress concentration

factor. The theoretical predictions are consistent with both
Griffith's and Orawan's treatments when applied to constant

strain rate data for glasslike polymers. 1In addition, the present

theory provides an explanation of several conceptual difficulties
which arise in the application of the Griffith surface energy concept.
(a) The effect of flaw introduction temperature is consistent
with the physical interpretation of the critical zone,
prior to flaw instability.
(b) The effect of a change in strain rate is predicted,
a priori, without recourse to an ad hoc variation in the
failure criterion.
(c) The "inherent flaw size" concept (3) developed from
data on samples containing both adventitious and artificial
flaws has shown anomolous behavior in that the inherent
flaw size appears to vary with temperature. 1In terms of the
present theory, the procedure used to obtain the inherent
flaw size cannot be considered valid since it has been shown
that flaw introduction conditions produce flaws of different
initial stress concentrating ability. Thus, adventitious
and inherent flaws cannot be characterized with respect to

flaw length alone.
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(d) The variation of tensile strength with temperature is
consistent with the expected enhancement of viscoelastic-
plastic response in the critical zone and does not require
any modification of the criterion of local failure.

(e) For a given material with known rheological constants,
and known molecular chain backbone structure, theoretical
failure curves for arbitrary sample loading histories

can be predicted, g_griori, and depend only on the initial
stress concentrating ability of the critical flaw. The
criterion of local failure, or flaw instability, is a material
constant which is independent of the rheological response

at the critical flaw tip.
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